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Abstract The V-shaped racemic compound 4,12-dinitro-

6,7,14,15-tetrahydro-6,14-methanocycloocta[1,2-b:5,6-b0]di-

quinoline 2 crystallises from solvents of differing water

content as a centrosymmetric spheroidal hexamer in the

form of a series of isostructural clusters (2)6�(water)x X-ray

structures of these crystals in space group R�3 show that they

can exhibit an extent of hydration anywhere throughout the

composition range x = 0 to 1.
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Introduction

For some time we have been investigating the chemistry of

racemic V-shaped diheteroaromatic compounds and, in

particular, their inclusion properties [1–6]. Characteristic

aspects of this study are our deliberate design strategy for

obtaining these host molecules and their normal use of only

weak supramolecular synthon attractions [7, 8] (rather than

more commonly used strong hydrogen bonding) in their

crystal packing arrangements. These studies have been

reviewed recently [9, 10].

One of the less expected outcomes of our investigation

was encountered when the derivative 1 was crystallised

from methanol or benzene containing traces of water. These

experiments yielded the compounds (1)6�(CH3OH) or

(1)6�(H2O), respectively [11, 12]. The isostructural crystals

formed in the trigonal space group R�3 have a repeat unit

comprising an assembly of six host molecules surrounding a

small cavity of �3 symmetry in which the guest is located

(Fig. 1).

The racemic dinitrodiquinoline 2 can also crystallise in

R�3 by formation of a hexameric cluster with concomitant

guest inclusion. It does so, however, by using a different

mode of assembly and which results in the unusual struc-

tural and inclusion properties described in this paper.
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Experimental

Structure determination

4,12-Dinitro-6,7,14,15-tetrahydro-6,14-methanocycloocta-

[1,2-b:5,6-b0]diquinoline 2 [13] was crystallised in turn

from anhydrous toluene, commercial toluene, commercial

dimethyl sulfoxide (DMSO), and acetonitrile–water mix-

ture to yield crystals of (2)6�(H2O)x, where x = 0.00, 0.48,

Donald C. Craig—Deceased 12 May 2009.

This contribution celebrates the 75th birthday of Len Lindoy and his

pioneering contributions to macrocyclic and coordination chemistry.

J. Ashmore � R. Bishop (&) � D. C. Craig � M. L. Scudder

School of Chemistry, The University of New South Wales

UNSW, Sydney, NSW 2052, Australia

e-mail: r.bishop@unsw.edu.au

123

J Incl Phenom Macrocycl Chem (2011) 71:297–302

DOI 10.1007/s10847-011-9943-4



0.78 and 1.00, respectively. Reflection data were measured

in h/2h scan mode with an Enraf–Nonius CAD-4 diffrac-

tometer and Mo-Ka radiation (k = 0.7107 Å). The posi-

tions of all atoms in the asymmetric unit were determined

by direct phasing (SIR92) [14] with hydrogen atoms

included in calculated positions. The occupancy of the

water in the structures x = 0.48 and 0.78 was refined.

Thermal motion of the water was described anisotropically

with cross terms U13 and U23 set to zero as required by

symmetry. The thermal motion of groups of adjacent atoms

was refined as 15 parameter TLX thermal groups (where T

is the translation tensor, L is the libration tensor and X is

the origin of libration). For all determinations, T = 297 K.

There was no crystal decay, and no corrections were

applied for absorption. Full details of refinement [15] can

be found in the supplementary information.

Crystallographic data (cif) have been deposited with the

Cambridge Crystallographic Data Centre (deposition

numbers CCDC 680471–680474). Copies can be obtained,

free of charge, from the Cambridge Crystallographic Data

Centre via www.ccdc.cam.ac.uk/data_request/cif.

Results

Racemic samples of the dinitrodiquinoline derivative 2 can

crystallise from anhydrous toluene in two concomitant

crystal forms [16, 17]: the lattice inclusion compound

(2)2�(toluene) which is a layer structure in the monoclinic

space group P21/n [13], and the solvent-free compound 2 in

R�3. The structure of the latter comprises hexameric sphe-

roidal assemblies of 2. If recrystallisation solvents that

contain differing amounts of water are used instead, then

only a range of isostructural R�3 crystals of composition

(2)6�(H2O)x is produced (where x lies between 0 and 1).

Single crystal X-ray determinations for the x = 0.00, 0.48,

0.78 and 1.00 compounds were found to only differ sig-

nificantly in their water occupancy. The spheroidal cluster

of 2 lacks sufficient internal void space to enclose the

guest, which instead associates at a surface location. The

numerical details of the solution and refinement of these

four X-ray crystal structures are presented in Table 1.

The hexameric spheroidal assembly of 2 in the com-

pound (2)6�(H2O) is illustrated in Fig. 2. This reveals that

three nitro groups (subtended by three molecules of 2 of the

same handedness) are proximal at the top, and three others

of molecules with opposite handedness at the bottom, of

each spheroid. These nitro-rich zones form N–O���H–O

hydrogen bonds (O���O distance 3.54 Å) with the water

molecules, which can occupy the �3 sites at the top of one

spheroid and the bottom of the next along c. Complete

occupancy (x = 1) is achieved if all these sites are used,

but partial (x = intermediate) or complete absence (x = 0)

of water requires essentially no structural alteration to the

packing of 2. We found no evidence for the inclusion of

alternative guest types in these tiny void spaces between

the nitro groups. Larger potentially hydrogen bonding

guests (such as chloroform) may be included by 2 but this

requires a completely different host arrangement [13].

If the spheroid assembly is hypothetically sliced in half

across the ab plane, and through its inversion centre, then it

can be seen (Fig. 3) that there are three identical offset face-

face (OFF) interactions [18] present between the endo-exo

aromatic wing surfaces belonging to pairs of opposite

enantiomers. There is also a triplet of identical aryl edge-

face (EF) interactions [19] between like enantiomers.

The spheroids (2)6 pack as layers along the c direction.

Each layer is made up of a combination of spheroids

indicated by pink, blue, and green colours in Fig. 4.

Adjacent layers are offset to allow close packing, with

three such layers making up the repeat. There are OFF

interactions between surfaces of adjacent spheroids. Where

two spheroids abut along c, and surrounding the six (nitro)

N–O���H–O (water) interactions, there are six bifurcated

(nitro) O���H–C interactions (d = 2.58 and 2.83 Å) [20,

21]. In addition, there are two different interactions of this

type (d = 2.61, 3.15 and d = 2.73, 2.75 Å) that occur

between spheroids in adjacent layers.

Fig. 1 Space-filling and

framework representations of

(1)6�(CH3OH) showing the

methanol guest enclosed at a
�3site and surrounded by six host

molecules. Host atom code: C

green, H light blue, N dark blue,

S yellow. Only one disorder

component of the guest is

illustrated for clarity. Both its

heavy atoms are coloured red
and its hydrogens are omitted

[11]
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Discussion

It is a most unusual event for an inclusion host to retain the

same packing arrangement with, and without, the presence

of its guest molecules. It is also rare for a small inclusion

host to include guests in variable proportions from zero- to

full-occupancy [22–25]. We are unaware of any prior

instance where both these conditions have been observed

for a lattice inclusion host over its entire range of zero- to

full-occupancy.

For example, b-cyclodextrin crystallises in space group

P21/c containing variable numbers of disordered water

molecules, such as (host)�(water)11.56, (host)�(water)11.89,

and (host)�(water)12.26 [26], but the anhydrous crystal

Table 1 Numerical details of the solution and refinement of the X-ray structures

Compound (2)6 (2)6�(H2O)0.48 (2)6�(H2O)0.78 (2)6�(H2O)

Formula C23H16N4O4 C23H16N4O4(H2O)0.08 C23H16N4O4(H2O)0.13 C23H16N4O4(H2O)0.17

Formula mass 412.4 413.8 414.7 415.5

Space group R�3 R�3 R�3 R�3

a, b/Å 25.983(4) 26.054(4) 26.020(4) 25.994(4)

c/Å 14.729(4) 14.740(3) 14.730(3) 14.733(4)

V/Å3 8612(3) 8665(2) 8637(2) 8621(2)

T/ �C 21(1) 21(1) 21(1) 21(1)

Z 18 18 18 18

Dcalc./g cm-3 1.43 1.43 1.44 1.44

Radiation, k/Å MoKa, 0.7107 MoKa, 0.7107 MoKa, 0.7107 MoKa, 0.7107

l/mm-1 0.099 0.094 0.100 0.100

Scan mode h/2h h/2h h/2h h/2h

2hmax./
o 50 46 50 50

No. of intensity meas. 3370 2691 3383 3375

Criterion for obs. ref. I/r(I) [ 2 I/r(I) [ 2 I/r(I) [ 2 I/r(I) [ 2

No. of indep. obsd. ref. 1870 1466 2138 1817

No. of reflections (m), 1870 1466 2138 1817

Variables (n) in final ref. 165 148 169 167

R =
Pm|DF|/

Pm|Fo| 0.054 0.066 0.056 0.051

Rw = [
Pmw|DF|2/

Pmw|Fo|2]1/2 0.058 0.072 0.067 0.055

s = [
Pmw|DF|2/(m–n)]1/2 1.55 1.49 1.79 1.47

Crystal decay none none none none

Min., max. trans. coeff. – – – –

R for mult. meas. 0.015 0.072 0.029 0.016

Largest peak in final diff. map/e Å-3 0.51 0.53 0.34 0.45

CCDC no. 680471 680472 680473 680474

Fig. 2 X-ray crystal structure

of the spheroid (2)6�(H2O)

projected in the ab (left) and ac
(right) planes. The carbon atoms

of the two enantiomers are

coloured green or orange. Atom

code: H light blue, N dark blue,

O red. The water molecule is

shown as a black sphere
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structure is unknown. In addition, Stezowski et al. have

reported isostructural crystals of a substituted b-cyclodex-

trin that contain 1.08 or zero water molecules [27]. In both

these instances, however, the cyclodextrin host is a per-

manently bonded receptor unit, rather than being a self-

assembling cluster.

Deoxycholic acid forms variable composition lattice

inclusion compounds with acetophenone in space group

P212121:(host)�(acetophenone)0.4 and (host)�(acetophenone)1.0

[28], but perhaps the closest analogues are the tunable clath-

rates described by Caira and Nassimbeni [29]. When a certain

diol was exposed to mixtures of dimethylformamide (DMF)

and dimethyl sulfoxide (DMSO), they found that the stepwise

series of five stoichiometric inclusion compounds of compo-

sition (host)�(DMF)n�(DMSO)4-n was produced in space

group P�1 (where n = integral values between 0 and 4).

The self-assembly of the spheroid (2)6 from its individual

building blocks is shown diagrammatically in Fig. 5. Each

arrow represents a �3 symmetry operation (a 120� rotation,

combined with inversion provided by the opposite enan-

tiomer). Assembly of this novel centrosymmetric spheroid

(2)6 is very different from that normally encountered in our

diquinoline studies [1–6]. It employs three molecules of

each enantiomer of 2, and uses only aryl-aryl synthons in its

formation.

It is notable that two concomitant crystal forms were

obtained when 2 was crystallised from anhydrous toluene

[13] but that only one was produced in the presence of

small quantities of water. Thus, although inclusion of the

guest water molecule is not obligatory (x = 0), its partial

(x = intermediate) or complete (x = 1) occupancy pro-

vides additional stabilisation of the inter-spheroid packing

by means of the strong hydrogen bonding. In contrast, the

cluster formed by 1 is only stabilised by means of weaker

C–H���O hydrogen bonding between the host and the guest

species.

In anhydrous solution there will be competing equilibria

between the various very weak intermolecular attractions.

Thus solvated versions of the monomer, adducts such those

shown in Fig. 5, and the alternative crystal nucleation

assemblies, are in competition. When traces of water are

present, these guest molecules are sequestered by the low

concentration of host hexamers to form hydrated crystals

involving stronger attractive forces and this results in

compounds with a slightly lower lattice energy. A switch to

just one crystal form therefore takes place.

The host cluster formed by 2 shows structural similarity

to the host capsule formed by 1. The latter also self-

assembles into a hexameric spheroid structure involving

three (?)-molecules on one side, and three (-)-isomers on

the opposite side, of the spheroid. In the case of host 1

these two trimers associate, leaving a small central cavity,

by means of a sixfold phenyl embrace [11, 30]. For 2, the

two trimers interdigitate much more fully and thereby

produce a cluster with no void space, rather than a capsule.

Fig. 3 One spheroid assembly with its top half sliced off horizon-

tally. The aromatic OFF and EF interactions present between the six

half-molecules of 2 are clearly visible. Equivalent interactions are

also present in the removed top half of the spheroid

Fig. 4 The crystal structure of 2 projected in the ab plane to show the

packing of the spheroid assemblies. Layers of spheroids (comprising a

combination of close-packed pink, blue, and green spheroids) repeat

along the c direction
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The self-assembly process of complementary molecular

building blocks into molecular capsules and spheroidal

aggregates is generally driven by carefully chosen and

positioned hydrogen bonding, ionic, or metal coordination

functionalities [31, 32]. The behaviour of the diquinolines 1

and 2 demonstrates that the use of weaker supramolecular

interactions can also succeed. With our current level of

prediction of weak interaction behaviour, however, any such

successes are likely to be serendipitous rather than designed.
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